
Verilator:
Open Simulation - Growing Up

Wilson Snyder
Cavium Networks

wsnyder@wsnyder.org

http://www.veripool.org/papers

Agenda

• Tenants
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 2

Agenda

• Tenants
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 3

Verilator Solves A Problem
• Verilator was created to solve a different problem

than most simulators
– Originally CPU design focused
– Take a Verilog model and merge it with C++/SystemC
– C++ owns the main loop, not the simulator
– 100% C++ executable is major advantage

• Enables easy cross compiling, gdb, valgrind, lots of other tools.
• Fast simulations into MATLAB (via vmodel)

• So, Verilator compiles Verilog into C++
– Matches synthesis rules, not simulation rules
– Time delays ignored (a <= #{n} b;)
– Only three state; unknowns randomized (better than Xs)

wsnyder 2013-01 Verilator - Open Simulation Growing Up 4

Performance

• Booting Linux on MIPS SoC

Verilator
N*-SIM

V**
A*H*L

Verilator
N*-SIM

CV*
V**

Icarus
32bit
64bit

Verilator
N*-SIM

• Testbuilder-Based Unit Test

• Motorolla Embedded CPU

Why so close?
8% in Verilog
92% in C Test Bench
Oh well!

As in all benchmarks,
your mileage will vary

wsnyder 2013-01 Verilator - Open Simulation Growing Up 5

Story

• A lot of hiring here in Boston, interviews every
few days, I ask about simulators or
environments and every few weeks someone
mentions and we use this open source simulator
you probably haven’t heard of called verilator…

HIDDEN

wsnyder 2013-01 Verilator - Open Simulation Growing Up 6

Verilator User Base

All trademarks registered by respective owners.
Users based on correspondence; there is no official way to determine “users” since there’s no license!

wsnyder 2013-01 Verilator - Open Simulation Growing Up 7

Open Source Upsides

• Cost – iff it does close to what you need
• Open License

– Required for some applications
• Example: NXP needed a solution they could provide to

software developers, and couldn’t contact a license server
• Example: Running simulations on cloud machines

– Stronger negotiation position when buying
commercial tools

• Source Code Visibility
– Repurposing and trying new ideas
– Visibility into everyone’s bugs and enhancement reqs
– Do-it-yourself quick bug turn-around

wsnyder 2013-01 Verilator - Open Simulation Growing Up 8

Open Source Downsides

• Support – you’re the first level support person
– There’s no guarantees someone else will fix your bug
– But you could fix it – with commercial tools, you can’t
– If you feed upstream others will likely maintain it!

• Most open source tools are this model

• Or hire a consultant offering paid support
– Far more cost effective than a commercial tool
– You get the exact feature you need
– They contribute changes upstream
– Embecosm, etc.

wsnyder 2013-01 Verilator - Open Simulation Growing Up 9

Agenda

• Tenants
• Birth and Exodus
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 10

History

• Verilator born in 1994 at Digital Equipment Corp
– Verilog was the new Synthesis Language
– C++ was the Test-bench Language
– No good tool existed to couple the two
– So Paul Wasson synthesized Verilog into C++

• Verilator reached Intel as part of ARM group sale
– Duane Galbi did the second rewrite
– DEC released Verilator into Open Source

wsnyder 2013-01 Verilator - Open Simulation Growing Up 11

Agenda

• Tenants
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 12

The Big Fixes

• Verilator adds self-tests, not only real designs
– Now >500 focused tests, send yours!

• Verilator simplifies installation
– Simplify requirements – e.g. SystemPerl removed (2010)

• Verilator goes multi-platform
– Linux, Debian, Apple OS, OpenSolaris, Cygwin, MS,

GCC, MSVC++, MingGW, …
– All beyond Linux are by contributors (Thanks!)

• Verilator may be user’s only simulator
– Continual improvement of error messages etc.
– Added Lint features (2007, 2011)

wsnyder 2013-01 Verilator - Open Simulation Growing Up 13

The Big Fixes (2)

• Verilator parses SystemVerilog
– SystemVerilog is >6x as complicated as Verilog 2001
– Different techniques have gotten us to 95% of SV

• Verilator adds complex data types
– Originally only Verilog array-of-bits
– Signed numbers (2005), Little endian (2009)
– SystemVerilog required full data types

• Data types on each “node” (2012)

– Many parts still need improvement
• VCD for SV constructs undefined by IEEE (complain!)

wsnyder 2013-01 Verilator - Open Simulation Growing Up 14

The Big Fixes (3)

• Verilator adds verification constructs
– Some verification constructs always creep in
– Dotted references (2006)
– DPI/VPI in (2010)
– Model save/restore (2012)
– Someday everything?

• Verilator needs some event-based simulation
– Clock gating (2005)
– Someday full events?

• Verilator VHDL
– In development!

wsnyder 2013-01 Verilator - Open Simulation Growing Up 15

SystemVerilog Additions

• Preprocessing 100% compliant (2009)
• Byte, chandle, int, longint…, var, void (2010)
• Packages and imports (2010-12)
• Typedefs and enums (2010)
• Packed structures (2012)
• Operator short circuiting (2012)
• More support as contributions continue…

wsnyder 2013-01 Verilator - Open Simulation Growing Up 16

• De-replicate large structures and duplicate logic

• Multithreaded execution & GPUs
– Hard to avoid communication bottlenecks
– GPUs – though not great at integer code
– Some PhD interest, but no patches yet!

• Optimize Caches
– Most models are load/store limited
– On large designs, smaller code footprint is faster

Future Performance

TIPS:
1. Buy CPUs with the largest caches you can get, they are

generally well worth the premium for ALL simulators.
2. Try using GCC –Os to optimize for size.

wsnyder 2013-01 Verilator - Open Simulation Growing Up 17

Agenda

• Tenants
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 18

Getting Started

• Download and install
– Globally: RPMs - Thanks, RPM packagers!
– or Globally: Download

./configure ; make ; make install
– or Cad-tool-ish with multiple versions and env var

./configure ; make
setenv VERILATOR_ROOT `pwd`
$VERILATOR_ROOT/bin/verilator …

• Follow example in “verilator –help”
– Create test Verilog file, top level C wrapper,

Verilate, compile and run
• Simple run to see warnings

verilator –lint-only –f input.vc top.v
wsnyder 2013-01 Verilator - Open Simulation Growing Up 19

Example Translation

• Verilog top module becomes a Class.
– Lower modules are inlined and generally opaque

• Inputs and outputs map directly to bool,
uint32_t, uint64_t, or array of uint32_t's

#include "verilated.h"

class Convert {
bool clk;
uint32_t data;
uint32_t out;

void eval();
}

module Convert;
input clk
input [31:0] data;
output [31:0] out;

always @ (posedge clk)
out <= data;

endmodule

wsnyder 2013-01 Verilator - Open Simulation Growing Up 20

Calling the model

• Application calls the Verilated class in a loop
– Verilator doesn’t make time pass!

• The key difference from most simulators

class Convert {
bool clk;
uint32_t data;
uint32_t out;

void eval();
}

int main() {
Convert* top = new Convert();
while (!Verilated::gotFinish()) {

top->data = …;
top->clk = !top->clk;

top->eval();

… = top->out();

time++; // Advance time…
}
top->final();

}

wsnyder 2013-01 Verilator - Open Simulation Growing Up 21

Verilated Internals

Inside the generated model are two major loops, the settle
loop called at initialization time, and the main change loop.

void eval()
First eval call

if (clock) Seq logic…
Combo logic…
If (clock) Seq logic…
Combo logic… Combo logic

(Settle blocks)

Initial
Statements

Signal change
Detected?

Signal change
Detected?

wsnyder 2013-01 Verilator - Open Simulation Growing Up 22

A Bug, Oh no! (and Sorry!)

• Try to fix warnings
– Verilator gets limited testing of warning-disabled cases
– Last week, user got 2.5x speedup by fixing warning

• Create a test case (see Verilator manpage)
– Please, please use “test_regress/t/t_EXAMPLE.v”
– Tests cases can be more important than the code itself

• Check it works on another simulator
– test_regress/t/t_EXAMPLE.pl –vcs/iverilog/nc

• Run with –debug
– test_regress/t/t_EXAMPLE.pl –debug

• Submit test to Veripool.org and try to fix
wsnyder 2013-01 Verilator - Open Simulation Growing Up 23

AstNode

The core internal structure is an AstNode

1:2: ASSIGNW 0xa097 <e1312> {e29} @dt=0x9b0@(sw10)
1:2:1: ADD 0xa098 <e774> {e29} @dt=0x9b0@(w10)
1:2:1:1: VARREF 0xa099 <e781> {e29} @dt=0x9b0@(w10) in [RV] <- VAR in
1:2:1:2: CONST 0xa09a <e1556> {e29} @dt=0x9b0@(w10) 10'h0
1:2:2: VARREF 0xa09c <e754> {e29} @dt=0x9b0@(w10) sum [LV] => VAR sum

VARREF ADD

ASSIGNW

If you run with –debug, you’ll see this in a .tree file:

CONST
10’h1

VARREFVAR in

VAR sum

Source Code
Line Number.

Node Address LV indicates an lvalue –
it sets the variable.

assign in = 10’h1 + sum;

Data type (10 bits)

wsnyder 2013-01 Verilator - Open Simulation Growing Up 24

Agenda

• Tenants
• Modernities
• Practicalities
• Finalities
• Q & A

wsnyder 2013-01 Verilator - Open Simulation Growing Up 25

Verilog-Perl Toolbox

• Code shared with Verilator
– Nearly identical preprocessor
– Superset of lexical analysis and parser
– Parses 95% of SystemVerilog 2009

• Vhier
– Print design hierarchy, input files, etc

• Vppreproc
– Complete 2009 preprocessor

• Vrename
– Rename and xref signals

across many files

To From Filenames
“a_new” “a” “MyMod.v”
“b” “b” “MyMod.v”

wsnyder 2013-01 Verilator - Open Simulation Growing Up 26

Verilog-Mode for Emacs
• Thousands of users, including most IP houses
• Fewer lines of code to edit means fewer bugs
• Indents code correctly, too
• Not a preprocessor,

code is always “valid” Verilog
• Automatically injectable

into older code.

GNU Emacs (Verilog-Mode))

…
/*AUTOLOGIC*/

a a (/*AUTOINST*/);

GNU Emacs (Verilog-Mode))

/*AUTOLOGIC*/
// Beginning of autos
logic [1:0] bus; // From a,b
logic y; // From b
mytype_t z; // From a
// End of automatics

a a (/*AUTOINST*/
// Outputs
.bus (bus[0]),
.z (z));

wsnyder 2013-01 Verilator - Open Simulation Growing Up 27

Conclusions
• Why adopt Verilator?

– Supported
• Continual language improvements
• Growing support network for 19 years
• Run as fast as major simulators

– Open Source Helps You
• Easy to run on laptops or SW developer machines
• Get bug fixes in minutes rather than months
• Greatly aids commercial license negotiation

– Keep your Commercial Simulators
• SystemVerilog Verification
• Run analog models, gate SDF delay models, etc
• Reference for signoff

– 90% of money you would spend on
licenses can go instead to computes

• 2-10x more simulations/$
wsnyder 2013-01 Verilator - Open Simulation Growing Up 28

Contributing Back

• The value is in the Community!
• Use Forums

– If just to tell us you’re using it

• Use Bug Reporting
– Even if to say what changes you’d like to see

• Try to submit a patch yourself
– Many problems take only a few hours to resolve

yourself; often less time than packaging up a test case
for an EDA company!

– Even if just documentation fixes!

• Advocate
wsnyder 2013-01 Verilator - Open Simulation Growing Up 29

• Verilator and open source design tools at
http://www.veripool.org
– Downloads
– Bug Reporting
– User Forums
– News & Mailing Lists
– These slides at

http://www.veripool.org/papers/

Sources

wsnyder 2013-01 Verilator - Open Simulation Growing Up 30

